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LETTER TO THE EDITOR 

Phase relationships in the MnTe-In,Te, system 

L Garbato, A Geddo Lehmann and F Ledda 
Dipartimento di Scienze Fisiche Universita' and GNSM-CISM, Via Ospedale 72,09124 
Cagliari, Italy 

Received 17 January 1989 

Abstract. The system (MnTe), _x-(In,Te,), has been investigated by microscopic exam- 
inations and x-ray diffraction to determine the region of mutual solubility. It has been found 
that a miscibility gap exists up to about x = 0.50, while for x 3 0.50 the two chalcogenides 
form a complete solid solution. At room temperature, the tetragonal symmetry is stable in 
the range 0.50 s x s 0.80, while alloys with x > 0.80 exhibit a FCC cell (defect zincblende) 
with partial cation order. Structural data for the adamantine phase MnIn,Te, are also 
reported. 

The physics of diluted magnetic semiconductors (DMS), also known as semi-magnetic 
semiconductors, presents many interesting phenomena, such as giant Faraday rotation 
[l] , large negative magnetoresistance [2] and spin-glass behaviour in the magnetic 
susceptibility [3,4]. These materials are formally obtained by substitutional dilution of 
the cation sublattice of a binary or more complex diamagnetic semiconducting compound 
by a paramagnetic ion. Most of the experimental work in this field has been carried out 
on Mn-based alloys, such as pseudo-binary MnX"'-Mr'XV' (MI' = Zn, Cd, Hg; Xv' = S,  
Se, Te) [5-71 and pseudo-ternary M"X"'-MnX"'-N"X"' (MI' # NI') [&lo] systems. 
Other DMS have been derived from ternary M'M"'X"' (MI ='Cu, Ag; M"' = Al, Ga, In) 
chalcopyrites [ll-131. The condition for the occurrence of a tetrahedral bond [14,15] is 
now that a pair of Mn2+ ions substitutes for a 1-111 pair. Many results indicate that 
ordering of manganese occurs in these quaternary alloys with significant influence on 
their magnetic properties [ l l ,  13, 161. 

Ternary semi-magnetic alloys can also be prepared by diluting a binary M5"XY' 
compound with a MnX"' chalcogenide. As a result, cation-deficient phases are obtained 
and ordering of vacancies makes possible the formation of superstructures. 

The equilibrium phase diagram of the section MnS-Ga2S3 has been investigated [ 171, 
and attention has been drawn to the possible existence of metastable phases due to off- 
equilibrium preparation conditions. 

Here we present some results on the room temperature phase relationships in the 
semi-magnetic system MnTe-In2Te3. It is shown that a solid solution can be formed over 
a wide range of compositions. Our preliminary data also indicate that metastable ordered 
phases can be observed in this system as well. 

Alloys of the general composition Mn, -Jn&Te, +&were prepared by direct synthesis 
from 'specpure' elements (In 5N, Te 4N). Purification of electrolytic manganese was 
carried out as described elsewhere [ l l ] .  The step in x was fixed at 0.05 near the terminal 
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points and 0.10 for other compositions. Significant points in the range of the system ( x  = 
0.25; 0.33; 0.66; 0.75) were also examined. To minimise chemical reactionof manganese 
with the holder, the elements were introduced into alumina crucibles, sealed under 
vacuum (lo-' Torr) in quartz tubes. The ampoules were heated up to 1150 "C, kept at 

Table 1. X-ray data for MnIn,Te, 

5.5446 
4.3820 
3.5760 
3.4345 
3.0985 
2.7705 
2.7032 
2.5286 
2.3006 
2.1901 
2.0653 
2.0370 
1.9591 
1.8677 
1.7885 
1.7181 
1.6559 
1.5863 
1.5486 
1.5026 
1.4916 
1.4601 
1.4213 
1.4120 
1.3853 
1.3518 
1.2646 
1.2328 
1.2149 
1.1923 
1.1867 
1.1504 
1.1455 
1.1082 
1.0952 
1.0625 
1.0472 
1.0434 
1.0150 
0.9795 
0.9447 

0.0194 
0.0311 
0.0464 
0.0503 
0.0619 
0.0775 
0.0812 
0.0928 
0.1121 
0.1239 
0.1392 
0.1431 
0.1548 
0.1701 
0.1856 
0.2009 
0.2165 
0.2360 
0.2477 
0.2628 
0.2667 
0.2782 
0.2938 
0.2978 
0.3092 
0.3248 
0.3710 
0.3906 
0.4018 
0.4175 
0.4214 
0.4481 
0.4522 
0.4832 
0.4945 
0.5257 
0.5409 
0.5450 
0.5759 
0.6183 
0.6643 

0.0193 
0.0309 
0.0464 
0.0503 
0.0618 
0.0773 
0.0812 
0.0928 
0.1121 
0.1237 
0.1391 
0.1430 
0.1546 
0.1701 
0.1855 
0.2010 
0.2164 
0.2358 
0.2474 
0.2628 
0.2667 
0.2783 
0.2937 
0.2976 
0.3092 
0.3247 
0.3710 
0.3904 
0.4020 
0.4174 
0.4213 
0.4483 
0.4522 
0.4831 
0.4947 
0.5256 
0.5411 
0.5450 
0.5759 
0.6184 
0.6649 

101 
110 
112 
103 
200,004 
202 
211 
114 
105,213 
220,204 
222 
301 
310 
312,116 
224 
206 
314 
323,305 
008,400 
402,226 
217,411 
118,330 
316,332 
413,325 
420,404,208 
422 
424,228 
501,327,431 
318,510 
512,336 
433,503 
426 
417,521 
435,505,523 
408,2016 
530,338 
516,532 
525 
437,507,611 
604,620 
536 

0.7 
0.6 

68.4 
5.0 
5.9 
3.9 
9.3 
2.0 
4.1 

100.0 
0.6 
3.4 
0.7 

23.1 
1 .o 
1 .o 
0.7 
1.9 
5.6 
1.2 
2.0 
0.9 

11.1 
5.6 
0.7 
0.9 

11.8 
2.1 
0.9 
8.0 
2.4 
0.8 
2.5 
1.3 
5.6 
0.6 
2.6 
0.6 
2.0 
3.1 
0.5 

this temperature for 2 days and then lowered to room temperature by an average cooling 
rate of 1.5 "C min-'. After preliminary metallographic and x-ray examination, the 
samples were annealed at 550 "C for 70 days in order to attain equilibrium conditions. 
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Figure 1. Variation of the effective cubic lattice 
constant aeff = ( ~ U ~ C ~ ) ' / ~  withcompositionxin the 

0.5 0 .7  0.9 homogeneous region of the system (MnTe), 
X (In2Te A. 

Structural characterisation of samples was obtained using a powder x-ray dif- 
fractometer (Cu K a  radiation) with graphite monochromator and rotating sample 
holder (step scan = 0.02 deg, measuring rate 0.25 deg s-'. The background and K a 2  
component were subtracted before data analysis. 

No differences in the solubility limits were observed before and after annealing. 
Analysis of the x-ray diffraction data showed that alloys in the composition range 
0.05 6 x < 0.50 were heterogeneous mixtures of tetragonal and hexagonal (NiAs-type) 
structures, often containing macroscopic precipitates of cubic (FeS2-type) MnTe2. This 
result indicates that the MnTe-In2Te3 system is not a true pseudo-binary section. Further 
confirmation of this comes from the fact that the lattice parameters of the tetragonal 
phase are also fairly composition-dependent in the heterogeneous region. Compositions 
with x 3 0.50 were homogeneous. At room temperature the tetragonal symmetry was 
stable in the range 0.50 6 x G 0.80, while the In2Te3-rich region exhibited the FCC 
structure. In this latter region, however, some differences were observed in the x-ray 
powder patterns of slowly cooled and annealed samples. For example, the x = 0.90 
composition, prepared by slow cooling, was indexed on a FCC cell (ao = 6.167 A), 
with an exception for three faint additional lines indicative of the existence of a cubic 
superstructurewithperiodao = 18.43 8,. Noforeignphasesorprecipitates were revealed 

Figure 2. The crystal cell of thiogallate (%Sa). 
Anions lie on the 8(g) sites. When complete order 
occurs in MnIn,Te,, the Mn atoms occupy the 
2(a) sites, the In atoms occupy the 2(b) and 2(c) 
sites, respectively. 
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by microscopic examinations. The superstructure lines disappeared after annealing at 
550 "C, this suggesting a completely randomised distribution of metal atoms and vacan- 
cies in the cationic sublattice. The structural behaviour of alloys in the cubic region 
(x > 0.80) is similar to the thermal polymorphism of In2Te3, which transforms to a 
completely disordered zincblende structure (/3-In,Te3) over the temperature range 
520-620 "C [18, 191. The low-temperature modification (acIn2Te3) crystallises in a FCC 
supercell (space group F43m) due to ordering of vacancies [20-221. In the case of the 
semi-magnetic system Mn-In-Te, however, only partial order is observed in the In2Te3- 
rich region under our experimental conditions, depending on the statistical likelihood 
of the diluted manganese occupying the vacant sites. 

Figure 1 shows the composition dependence of the effective cubic lattice parameter 
aeff= ( ; U ~ C ~ ) ' / ~  of alloys in the single-phase region. The straight line ueff(x) can be 
extrapolated at the x = 0 composition to give the lattice constant of a hypothetical 
zincblende phase of MnTe. We obtain 2.70 A for the tetrahedral Mn-Te bond length. 
This value is slightly smaller than those derived from the study of the MnTe-CdTe [6] 
and CuInTe,-MnTe [ l l ]  systems, but it agrees very well with the value of 2.71 A 
calculated in [23] and predicted by the Pauling set of tetrahedral radii [24]. 

Cu,Te 
(Hex, Cub1 

CuMn, InTe 
CuMnInTe, 

(B31 1831 
Heterogeneous 
region 

Figure 3. Composition triangle for the system 
CuzTe-In,Te3-MnTe. The structures follow the 
Strukturbericht notation: E3 = defect chalco- 
pyrite; B3 = zincblende; El ,  = normal chalco- 
pyrite; B8, = nickel arsenide; B1 = sodium 
chloride. Lightly shaded areas indicate regions 
with tetragonal symmetry. The heavily shaded 
area refers to the homogeneous region with cubic 
symmetry. 

Table 1 lists the observed peak sequence of the x-ray spectrum of the x = 0.50 
composition and all the allowed indexes for the inner centred symmetry. MnIn2Te, 
crystallises in a tetragonal deficient CdGa,S,-like structure, typical of most of the 
compounds of the adamantine M"M$"Xy' family (figure 2). The lattice parameters, 
refined by the least-squares method on 41 reflections, are a. = 6.1951(4) A and co = 
12.390(2) A, leading to a tetragonal deformation 6 = 2 - c/a = 0. Assuming d(Mn- 
Te) = 2.71 A and d(In-Te) = 2.76 A as average values for the cation-anion distances, 
the anion coordinate should be just slightly shifted from the ideal position. The sim- 
ultaneous absence of tetragonal and internal crystallographic distortion suggests for this 
compound a structural order-disorder behaviour at high temperature [25-271. 

The present investigation, together with our previous results for the CuInTe2-MnTe 
phase diagram [ l l ]  and those concerning the Cu2Te-In2Te3 system [28-301 can be used 
to construct the composition triangle shown in figure 3. 
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